2020
DOI: 10.1587/transinf.2020edl8044
|View full text |Cite
|
Sign up to set email alerts
|

Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning

Abstract: Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a full… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 15 publications
0
0
0
Order By: Relevance