The effects of drawing parameters and annealing process on the properties and microstructure of single crystal copper wire are studied using a wire-drawing machine, heat-treatment equipment, microcomputer-controlled electronic universal tester, resistance tester, and scanning electron microscope. The results show that, after drawing the single-crystal copper wire with a single-pass deformation of 14%, the grains elongate along the tensile direction, tensile strength increases from 500.83 MPa to 615.5 Mpa, and resistivity changes from 1.745 × 10−8 Ω·m to 1.732 × 10−8 Ω·m. After drawing at a drawing rate of 500 m/min, the degree of grain refinement increases and tensile strength increases from 615.5 Mpa to 660.26 Mpa. When a copper wire of Φ0.08 mm is annealed, its tensile strength decreases from 660.26 Mpa to 224.7 Mpa, and elongation increases from 1.494% to 19.87% when the annealing temperature increases to 400 °C. When the annealing temperature increases to 550 °C, the tensile strength and elongation decrease to 214.4 MPa and 12.18%, respectively.