Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Context. The γ-process nucleosynthesis in core-collapse supernovae is generally accepted as a feasible process for the synthesis of neutron-deficient isotopes beyond iron. However, crucial discrepancies between theory and observations still exist: the average yields of γ-process nucleosynthesis from massive stars are still insufficient to reproduce the solar distribution in galactic chemical evolution calculations, and the yields of the Mo and Ru isotopes are a factor of ten lower than the yields of the other γ-process nuclei. Aims. We investigate the γ-process in five sets of core-collapse supernova models published in the literature with initial masses of 15, 20, and 25 M⊙ at solar metallicity. Methods. We compared the γ-process overproduction factors from the different models. To highlight the possible effect of nuclear physics input, we also considered 23 ratios of two isotopes close to each other in mass relative to their solar values. Further, we investigated the contribution of C–O shell mergers in the supernova progenitors as an additional site of the γ-process. Results. Our analysis shows that a large scatter among the different models exists for both the γ-process integrated yields and the isotopic ratios. We find only ten ratios that agree with their solar values, all the others differ by at least a factor of three from the solar values in all the considered sets of models. The γ-process within C–O shell mergers mostly influences the isotopic ratios that involve intermediate and heavy proton-rich isotopes with A > 100. Conclusions. We conclude that there are large discrepancies both among the different data sets and between the model predictions and the solar abundance distribution. More calculations are needed; particularly updating the nuclear network, because the majority of the models considered in this work do not use the latest reaction rates for the γ-process nucleosynthesis. Moreover, the role of C–O shell mergers requires further investigation.
Context. The γ-process nucleosynthesis in core-collapse supernovae is generally accepted as a feasible process for the synthesis of neutron-deficient isotopes beyond iron. However, crucial discrepancies between theory and observations still exist: the average yields of γ-process nucleosynthesis from massive stars are still insufficient to reproduce the solar distribution in galactic chemical evolution calculations, and the yields of the Mo and Ru isotopes are a factor of ten lower than the yields of the other γ-process nuclei. Aims. We investigate the γ-process in five sets of core-collapse supernova models published in the literature with initial masses of 15, 20, and 25 M⊙ at solar metallicity. Methods. We compared the γ-process overproduction factors from the different models. To highlight the possible effect of nuclear physics input, we also considered 23 ratios of two isotopes close to each other in mass relative to their solar values. Further, we investigated the contribution of C–O shell mergers in the supernova progenitors as an additional site of the γ-process. Results. Our analysis shows that a large scatter among the different models exists for both the γ-process integrated yields and the isotopic ratios. We find only ten ratios that agree with their solar values, all the others differ by at least a factor of three from the solar values in all the considered sets of models. The γ-process within C–O shell mergers mostly influences the isotopic ratios that involve intermediate and heavy proton-rich isotopes with A > 100. Conclusions. We conclude that there are large discrepancies both among the different data sets and between the model predictions and the solar abundance distribution. More calculations are needed; particularly updating the nuclear network, because the majority of the models considered in this work do not use the latest reaction rates for the γ-process nucleosynthesis. Moreover, the role of C–O shell mergers requires further investigation.
Reliable photonuclear reaction rates in stellar conditions are essential for understanding the origin of the heavy stable neutron-deficient isotopes between 74Se and 196Hg, i.e., p-nuclei. However, many reaction rates of relevance still have to rely on the Hauser–Feshbach (HF) model due to the rarity of experimental progress. One such case is in the mass range of 160 for Dy, Er, Ho, and Tm isotopes. In this work we attempt to constrain the HF model in the TALYS package by reproducing the available experimental data on 160Dy(p, γ)161Ho and 162Er(p, γ)163Tm in the A ∼ 160 mass region, and examine the effects of level density, gamma strength function, and the optical model potential. The constrained model then allows us to calculate the reaction rates of 157,159Ho(γ, p) and 163,165Tm(γ, p) for the γ-process nucleosynthesis in a carbon-deflagration model for Type Ia supernovae. Our recommended rates differ from the JINA REACLIB by more than one order of magnitude in the temperature range 2–3 GK. This results in changes in the final abundance of p-nuclei in the A ∼ 160 mass range by −5.5% to 3% from those with JINA, which means that the uncertainty of (γ, p) reactions is not predominant for the synthesis of these nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.