The priming of eosinophils by cytokines leading to augmented response to chemoattractants and degranulating stimuli is a characteristic feature of eosinophils in the course of allergic inflammation and asthma. Actin reorganization and integrin activation are implicated in eosinophil priming by GM-CSF but their molecular mechanism of action is unknown. In this regard, we investigated the role of L-plastin, an eosinophil phosphoprotein which we identified from eosinophil proteome analysis. Phosphoproteomic analysis demonstrated the upregulation of phosphorylated L-plastin after eosinophil stimulation with GM-CSF. In addition, co-immunoprecipitation studies demonstrated a complex formation of phosphorylated L-plastin with Protein Kinase C βII (PKCβII), GM-CSF receptor α chain, and two actin associated proteins, paxilin and cofilin. Inhibition of PKCβII with 4,5-bis (4-fluoroanilino)phtalimide or PKCβII specific siRNA blocked GM-CSF induced phosphorylation of L-plastin. Furthermore, flow cytometric analysis also showed an upregulation of αMβ2 integrin which was sensitive to PKCβII inhibition. In chemotaxis assay, GM-CSF treatment allowed eosinophils to respond to lower concentrations of eotaxin which was abrogated by the above mentioned PKCβII inhibitors. Similarly, inhibition of PKCβII blocked GM-CSF induced priming for degranulation as assessed by release of ECP and EPX in response to eotaxin. Importantly, eosinophil stimulation with a synthetic L-plastin peptide (residues 2–19) phosphorylated on Ser5 upregulated αMβ2 integrin expression and increased eosinophil migration in response to eotaxin independent of GM-CSF stimulation. Our results establish a causative role for PKCβII and L-plastin in linking GM-CSF-induced eosinophil priming for chemotaxis and degranulation to signaling events associated with integrin activation via induction of PKCβII -mediated L-plastin phosphorylation.