Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fumonisin B1 is a common food contaminant that has been found to adversely affect the reproductive system, especially Sertoli cells. However, the potential mitigation of FB1-induced cytotoxicity in Sertoli cells has not been fully elaborated. Resveratrol is a natural substance with anti-inflammatory, antioxidant, and anti-tumor properties. Herein, the protective effects of resveratrol against FB1-induced cytotoxicity in Sertoli cells were examined in this work. The mouse Sertoli cell line (TM4) was used as a research model. These results indicated that FB1 (40 μM and 80 μM) significantly reduces cell viability, disrupts the cell barrier, and induces an inflammatory response in TM4 cells. To our surprise, resveratrol (15 μM) showed an ability to reverse adverse effects induced by FB1 (40 μM). Furthermore, resveratrol could alleviate the FB1-induced apoptosis, decrease ROS level, and promote the antioxidant enzymes (CAT and SOD2) expression in FB1-treated TM4 cells. The addition of resveratrol could mitigate FB1-induced promoted phosphorylation of JNK and upregulation of c-jun expression. Interestingly, resveratrol was also able to mitigate the cytotoxicity of FB2 (40 μM), FB3 (40 μM), and an FB1-FB2-FB3 (40 μM-40 μM-40 μM) combination group on TM4 cells. In summary, this research displayed that resveratrol may alleviate fumonisin B1-induced cytotoxicity in Sertoli cells via inhibiting oxidative stress-mediated JNK/c-jun signaling pathway-induced apoptosis. This study provides new insights into the prevention and treatment of FB1-induced testicular toxicity and highlights the potential application value of resveratrol.
Fumonisin B1 is a common food contaminant that has been found to adversely affect the reproductive system, especially Sertoli cells. However, the potential mitigation of FB1-induced cytotoxicity in Sertoli cells has not been fully elaborated. Resveratrol is a natural substance with anti-inflammatory, antioxidant, and anti-tumor properties. Herein, the protective effects of resveratrol against FB1-induced cytotoxicity in Sertoli cells were examined in this work. The mouse Sertoli cell line (TM4) was used as a research model. These results indicated that FB1 (40 μM and 80 μM) significantly reduces cell viability, disrupts the cell barrier, and induces an inflammatory response in TM4 cells. To our surprise, resveratrol (15 μM) showed an ability to reverse adverse effects induced by FB1 (40 μM). Furthermore, resveratrol could alleviate the FB1-induced apoptosis, decrease ROS level, and promote the antioxidant enzymes (CAT and SOD2) expression in FB1-treated TM4 cells. The addition of resveratrol could mitigate FB1-induced promoted phosphorylation of JNK and upregulation of c-jun expression. Interestingly, resveratrol was also able to mitigate the cytotoxicity of FB2 (40 μM), FB3 (40 μM), and an FB1-FB2-FB3 (40 μM-40 μM-40 μM) combination group on TM4 cells. In summary, this research displayed that resveratrol may alleviate fumonisin B1-induced cytotoxicity in Sertoli cells via inhibiting oxidative stress-mediated JNK/c-jun signaling pathway-induced apoptosis. This study provides new insights into the prevention and treatment of FB1-induced testicular toxicity and highlights the potential application value of resveratrol.
PTD-FNK, a synthetic anti-apoptotic protein, has been shown to potently alleviate cellular injuries. However, the effects of PTD-FNK on oxidative defense in boar testicular Sertoli cells (SCs) against oxidative injury has not been explored. In this study, we show that exposure of SCs to 100 mg/L lipopolysaccharide (LPS) for 12 h leads to decreased survival rate, superoxide dismutase (SOD) activity, and increased malondialdehyde (MDA). Treatment with 0.01 nmol/L PTD-FNK for 4 h significantly enhanced the activity of SOD, catalase (CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in SCs. Concurrently, PTD-FNK treatment effectively reduced the production of reactive oxygen species (ROS) and the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) in SCs. Moreover, using His pull-down and LC-MS techniques, we identified PTD-FNK-interacting proteins and confirmed that this protective effect may be mediated by the regulation of the Keap1-Nrf2 signaling pathway by PTD-FNK. Therefore, PTD-FNK alleviates LPS-induced oxidative stress via the Keap1/Nrf2 pathway, providing novel insights for the development of therapeutic agents targeting testicular oxidative damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.