PurposeThe paper aims to investigate and evaluate the impacts of the voids combination as a passive design feature on wind-driven ventilation performance in high-rise residential building units. It proposes a series of building models and thereon indoor ventilation performance and outlining why and how these building models designed with architectural design features are important. This study aims to provide a comprehensive understanding of how natural ventilation as a passive cooling strategy in living units of high-rise residential buildings can be applied through improving the provision of the architectural design feature of voids configurations.Design/methodology/approachThe study was carried out through field measurements experiment and the computational fluid dynamics methods. A series of numerical simulations were carried out to calculate the indoor ventilation rate inside the case studies of the generated building models based on various variables such as horizontal voids type, size and wind directions.FindingsThe results indicate that the provision of a single-sided horizontal voids in building models can improve the indoor ventilation rate in units with cross ventilation mode up to 4 times, depending on wind direction and living unit location. The indoor ventilation performance in units located in models with single-sided horizontal voids is 17.54% higher than the units located in models without voids configuration. Furthermore, higher indoor ventilation performance was achieved in the case scenarios located at higher levels compared to the middle and lower levels in both horizontal voids types.Originality/valueThis study explores the application of voids combinations for natural ventilation performance, investigates the numerical simulation results and validates field measurements experiment data using CFD simulation.