Abstract:Generative adversarial networks (GANs) and Conditional GANs (cGANs) have recently been applied for singing voice extraction (SVE), since they can accurately model the vocal distributions and effectively utilize a large amount of unlabelled datasets. However, current GANs/cGANs based SVE frameworks have no explicit mechanism to eliminate the mutual interferences between different sources. In this work, we introduce a novel 'crossfire' criterion into GANs to complement its standard adversarial training, which fo… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.