We have developed a case study of crosshole seismic tomography with a cross-firing geometry in which seismic sources were placed in two vertical boreholes alternatingly and receiver arrays were placed in another vertical borehole. There are two crosshole seismic data sets in a conventional sense. These two data sets are used jointly in seismic tomography. Because the local sediment is dominated by periodic, flat, thin layers, there is seismic anisotropy with different velocities in the vertical and horizontal directions. The vertical transverse isotropy anisotropic effect is taken into account in inversion processing, which consists of three stages in sequence. First, isotropic traveltime tomography is used for estimating the maximum horizontal velocity. Then, anisotropic traveltime tomography is used to invert for the anisotropic parameter, which is the normalized difference between the maximum horizontal velocity and the maximum vertical velocity. Finally, anisotropic waveform tomography is implemented to refine the maximum horizontal velocity. The cross-firing acquisition geometry significantly improves the ray coverage and results in a relatively even distribution of the ray density in the study area between two boreholes. Consequently, joint inversion of two crosshole seismic data sets improves the resolution and increases the reliability of the velocity model reconstructed by tomography.