2019
DOI: 10.1007/jhep10(2019)061
|View full text |Cite
|
Sign up to set email alerts
|

Crossing, modular averages and N ↔ k in WZW models

Abstract: We consider the construction of genus zero correlators of SU (N ) k WZW models involving two Kac Moody primaries in the fundamental and two in the anti-fundamental representation from modular averaging of the contribution of the vacuum conformal block. In cases where we find the orbit of the vacuum conformal block to be finite, modular averaging reproduces the exact result for the correlators. In other cases, we perform the modular averaging numerically, the results are in agreement with the exact answers. We … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 70 publications
(81 reference statements)
0
2
0
Order By: Relevance
“…This paper discusses the construction of differential equation for the conformal blocks that appear in the expansion of a crossing symmetric 4-point sphere correlator. Crossing symmetry translates as certain modular properties of the correlator under a well-known map [6] between the cross-ratio space and the complex upper half plane H + [7][8][9]. This allows us to write modular linear differential equations (MLDEs) in τ ∈ H + w.r.t.…”
Section: Jhep02(2023)158mentioning
confidence: 99%
See 1 more Smart Citation
“…This paper discusses the construction of differential equation for the conformal blocks that appear in the expansion of a crossing symmetric 4-point sphere correlator. Crossing symmetry translates as certain modular properties of the correlator under a well-known map [6] between the cross-ratio space and the complex upper half plane H + [7][8][9]. This allows us to write modular linear differential equations (MLDEs) in τ ∈ H + w.r.t.…”
Section: Jhep02(2023)158mentioning
confidence: 99%
“…In this section, we review the necessary elements of this relationship. For more details, see [6][7][8][9].…”
Section: Reviewmentioning
confidence: 99%