2019
DOI: 10.1016/j.fluid.2019.04.035
|View full text |Cite
|
Sign up to set email alerts
|

Crossover multiparameter equation of state: General procedure and demonstration with carbon dioxide

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1
1

Relationship

1
8

Authors

Journals

citations
Cited by 24 publications
(8 citation statements)
references
References 38 publications
0
6
0
2
Order By: Relevance
“…Kiselev [23] 基于对Landau展 开 [24] 的重整化群变换提出了跨接方法, 在临界点施加 重整化群理论, 使得状态方程可以严格地再现热力学 性质的渐近奇异性和标度律; 在远离临界点的温度、 密度区域, 使重整化群理论的贡献消失, 恢复到经典状 态方程. 跨接方法已被成功地应用于立方型状态方 程 [ 2 3 , 2 5 ~2 9 ] 、统计缔合流体理论 [ 3 0 ] 、多参数状态方 程 [20,31] 等. 由于跨接方法以跨接函数提供临界点和常 规区域之间的半理论连接, 选取恰当的跨接函数是跨 接状态方程实现高精度热力学性质描述的前提.…”
Section: 对流体热力学性质的准确描述是工业过程设计和优化unclassified
See 1 more Smart Citation
“…Kiselev [23] 基于对Landau展 开 [24] 的重整化群变换提出了跨接方法, 在临界点施加 重整化群理论, 使得状态方程可以严格地再现热力学 性质的渐近奇异性和标度律; 在远离临界点的温度、 密度区域, 使重整化群理论的贡献消失, 恢复到经典状 态方程. 跨接方法已被成功地应用于立方型状态方 程 [ 2 3 , 2 5 ~2 9 ] 、统计缔合流体理论 [ 3 0 ] 、多参数状态方 程 [20,31] 等. 由于跨接方法以跨接函数提供临界点和常 规区域之间的半理论连接, 选取恰当的跨接函数是跨 接状态方程实现高精度热力学性质描述的前提.…”
Section: 对流体热力学性质的准确描述是工业过程设计和优化unclassified
“…1.3 Ginsburg数的确定 1.1节所述的跨接方法仅引入1个可调参数Gi. 为比 较各阶模型, 本文没有采用许心皓等人 [28,39] 对于2阶模 型提出的Gi通用化关联式, 而是由T b ~Tc 范围内的饱和 蒸气压(p sat )、饱和液相密度(ρ′)和饱和气相密度(ρ′′)的 参考数据 [19,40~44] 临界区流体热力学性质特征的状态方程(例如多参数 状态方程)时, 应当选取更高阶的跨接函数 [20] . 文献…”
Section: Srk状态方程在高密度区的精度较低 常数的比 容平移可以显著地改善其在高密度区的表现unclassified
“…Recently, a comprehensive study on thermophysical properties of carbon dioxide using an EoS coupled with the developed Kiselev's crossover method was performed by Yang et al, in which the singular behavior of thermodynamic properties was enforced by the crossover method. 59 While according to the work of Vinhal et al 54 and Silva et al, 56 it is also clear that the White method involved in the classical EoS can significantly improve the performance on vapor−liquid phase equilibrium (VLE) and some derivative properties of carbon dioxide, but more studies on more properties still need to be implemented. Therefore, the first purpose of this study is to give a comprehensive investigation of the thermodynamic and transport properties of carbon dioxide, and to provide a set of model parameters for the calculation of these properties.…”
Section: Introductionmentioning
confidence: 99%
“…Second, the M-H EOS is extended to achieve diversified applications [27][28][29][30][31][32], e.g., the crossover multiparameter EOS [31,32]. Last but not least, the combination of the M-H EOS with other theories is further developed, which has solved many thorny problems in the past [33][34][35][36][37].…”
Section: Introductionmentioning
confidence: 99%