We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells located in the bulge area which are termed hair-follicle-associated pluripotent (HAP) stem cells. HAP stem cells from mouse and human could form spheres in culture, termed hair spheres, which are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Subsequently, we demonstrated that nestin-expressing stem cells could effect nerve and spinal cord regeneration in mouse models. In the present study, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. We separated the mouse vibrissa hair follicle into 3 parts (upper, middle, and lower), and suspended each part separately in DMEM containing 10% FBS. All three parts of hair follicle differentiated to beating cardiac muscle cells as well as neurons, glial cells, keratinocytes and smooth muscle cells. The differentiation potential to cardiac muscle is greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol and inhibited by propanolol. HAP stem cells have potential for regenerative medicine for heart disease as well as nerve and spinal cord repair.