That communication can occur between virus-infected cells has been appreciated for nearly as long as has virus molecular biology. The original virus communication process specifically was that seen with T-even bacteriophages—phages T2, T4, and T6—resulting in what was labeled as a lysis inhibition. Another proposed virus communication phenomenon, also seen with T-even phages, can be described as a phage-adsorption-induced synchronized lysis-inhibition collapse. Both are mediated by virions that were released from earlier-lysing, phage-infected bacteria. Each may represent ecological responses, in terms of phage lysis timing, to high local densities of phage-infected bacteria, but for lysis inhibition also to locally reduced densities of phage-uninfected bacteria. With lysis inhibition, the outcome is a temporary avoidance of lysis, i.e., a lysis delay, resulting in increased numbers of virions (greater burst size). Synchronized lysis-inhibition collapse, by contrast, is an accelerated lysis which is imposed upon phage-infected bacteria by virions that have been lytically released from other phage-infected bacteria. Here I consider some history of lysis inhibition, its laboratory manifestation, its molecular basis, how it may benefit expressing phages, and its potential ecological role. I discuss as well other, more recently recognized examples of virus-virus intercellular communication.