Along with the development of multimedia technology, an overview of the campus environment for prospective new visitors can be visualized through a 3D virtual environment based on virtual reality. A crowd simulation system is needed to provide an overview of the crowds in campus virtual reality (CVR). The simulation helps make it easier for individuals to predict crowds in certain areas virtually. In this study, we propose using the Reciprocal Velocity Obstacle (RVO) method to support the simulation of Non-Playable Character (NPC) crowds in a visualized virtual environment. RVO implements multi-agent navigation by estimating the possibility of moving without communication between agents and being able to perform collision avoidance. The use of RVO in this study aims to contribute to the collision detection development process for each NPC. The application of RVO is carried out in the development of virtual reality by using Unity3D and Blender asset support tools. The results of this study indicate that the RVO method can be applied in multi-agent navigation. These results were confirmed by the success of the NPC as a simulation agent in selecting routes and independently navigating to avoid collisions between agents without the need for communication. In every simulation, collisions will occur within a set of agents due to high density, which causes complex computations. The development of CSS can help every CVR user experience a virtual environment. In addition, each user can experience a more natural experience with the presence of 3D objects and virtual reality with RVO-based CSS. Furthermore, this research material is expected to be developed from various perspectives and themes related to crowd simulation for games and other simulation media.