Histone pre-mRNAs are cleaved at the 3′ end by a complex that contains U7 snRNP, the FLICE-Associated Huge protein (FLASH) and Histone pre-mRNA Cleavage Complex (HCC) consisting of several polyadenylation factors. Within the complex, the N-terminus of FLASH interacts with the N-terminus of the U7 snRNP protein Lsm11 and together they recruit the HCC. FLASH through its distant C-terminus independently interacts with the C-terminal SANT/Myb-like domain of Nuclear Protein, Ataxia-Telangiectasia locus (NPAT), a transcriptional co-activator required for expression of histone genes in S-phase. To gain structural information on these interactions, we used mass spectrometry to monitor hydrogen/deuterium (H/D) exchange in various regions of FLASH, Lsm11 and NPAT alone or in the presence of their respective binding partners. Our results indicate that the FLASH-interacting domain in Lsm11 is highly dynamic, while the more downstream region required for recruiting the HCC exchanges deuterium slowly and likely folds into a stable structure. In FLASH, a stable structure is adopted by the domain that interacts with Lsm11 and this domain is further stabilized by binding Lsm11. Notably, both H/D exchange experiments and in vitro binding assays demonstrate that Lsm11, in addition to interacting with the N-terminal region of FLASH, also contacts the C-terminal SANT/Myb-like domain of FLASH, the same region that binds NPAT. However, while NPAT stabilizes this domain, Lsm11 causes its partial relaxation. These competing reactions may play a role in regulating histone gene expression in vivo.