2023
DOI: 10.48550/arxiv.2302.01708
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Crucial Semantic Classifier-based Adversarial Learning for Unsupervised Domain Adaptation

Abstract: Unsupervised Domain Adaptation (UDA), which aims to explore the transferrable features from a well-labeled source domain to a related unlabeled target domain, has been widely progressed. Nevertheless, as one of the mainstream, existing adversarial-based methods neglect to filter the irrelevant semantic knowledge, hindering adaptation performance improvement. Besides, they require an additional domain discriminator that strives extractor to generate confused representations, but discrete designing may cause mod… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?