Abstract:The objectives were to determine effects of salt inclusion on production yields, commercial slicing yields, sensory characteristics, and lipid oxidation of bacon. A total of 144 bellies that ranged in weight from 5.8 to 6.6 kg were selected from 2 different suppliers. Fresh bellies were weighed to determine an initial weight (green weight). Then, bellies were randomly assigned to salt levels of 1.2, 1.5, or 1.8% in the final product and manufactured into bacon. Bacon was stored frozen, in aerobic packages, for approximately 0 d, 30 d, 60 d, or 90 d and analyzed for lipid oxidation. Sensory analysis was conducted approximately 14 d after slicing and again 90 d later. Cook yield was increased (P ≤ 0.05) in 1.2% bacon compared with 1.5 and 1.8% bacon, but slicing yield was 1% unit greater (P ≤ 0.05) in 1.8% bacon compared with 1.2% bacon. Increasing salt content from 1.5 to 1.8% increased the number of bacon slices generated from a slab of bacon by 12 slices and by nearly 16 slices when compared with the 1.2% treatment. Sensory saltiness increased (P ≤ 0.05) as intended salt level increased. Lipid oxidation and oxidized odor and flavor intensity was not different among salt treatment levels within any storage period. Reducing salt from 1.8 to 1.2% in bacon can adversely affect slicing yield, but was not detrimental to cook yield and did not reduce the rate of lipid oxidation of bacon.