Methane, as a clean energy source and a potent greenhouse gas, is produced in marine sediments by microbes via complex biogeochemical processes associated with the mineralization of organic matter. Quantitative modeling of biogeochemical processes is a crucial way to advance the understanding of the global carbon cycle and the past, present, and future of climate change. Here, we present a new approach of dynamic transport-reaction model combined with sediment deposition. Compared to other studies, since the model does not need the methane concentration in the bottom of sediments and predicts that value, it provides us with a robust carbon budget estimation tool in the sediment. We applied the model to the Blake Ridge region (Ocean Drilling Program, Leg 164, site 997). Based on seafloor data as input, our model remarkably reproduces measured values of total organic carbon, dissolved inorganic carbon, sulfate, calcium, and magnesium concentration in pore waters and the in situ methane presented in three phases: dissolved in pore water, trapped in gas hydrate, and as free gas. Kinetically, we examined the coexistence of free gas and hydrate, and demonstrated how it might affect methane gas migration in marine sediment within the gas hydrate stability zone.