The seismicity of the Arabian plate, which is the aim of this paper, is controlled by the ZagrosTaurus collision zone in the North, the Indian expansion zone and the Arab golf in the South and the East, the Dead Sea Fault, the North continuity of the Red Sea, and the Syrian rift, which links the rigid Arabian plate to the mobile ophiolite belt of Cyprus-Southern Turkey in the West. These major elements with their related fracture system, make the Arabian plate an important seismic centre. To attain our purpose, a variable methodology is used in: measurements of movement rate-displacement in the field, the analysis of historical and recent seismic data, and physical effects on the structures. The movement rate-displacement, calculated in the field by different specialists, varies from 2 to 6 mm/year. This rate increases from 2 -3 mm/year in the North, to 6 mm in the South. These estimations are confirmed by historical seismic data, the recent seismic recorded by the Arab seismic centers, and physical effects on the building structures in the region. The analysis of historical and recent seismic data recorded in the seismic centre show that the seismicity in this plate, tend to fade out with time. This result is in agreement with recent estimations on the movement rate, and in line with the decrease of major seismic intensity, which has occurred during the last millennium. A conclusion of time-evolution seismicity is traced, and a seismic zoning map, for the Arabian plate, using movement rate, seismic data, and tectono-geodynamic analysis, is proposed.