Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The refraction data from the SUDETES 2003 experiment were used for highresolution tomography along the profile S01. The S01 profile crosses the zone ErbendorfVohenstrauss (ZEV) near the KTB site, then follows the SW-NE oriented Eger Rift in the middle part and continues toward the NE across the Elbe zone and the Sudetic structures as far as the Trans-European Suture Zone. To get the best resolution in the velocity image only the first arrivals of Pg waves with minimum picking errors were used. The previous depth-recursive tomographic method, based on Claerbout's imaging principle, has been adapted to perform the linearized inversions in iterative mode. This innovative DRTG method (Depth-Recursive Tomography on Grid) uses a regular system of refraction rays covering uniformly the mapped domain. The DRTG iterations yielded a fine-grid velocity model with a required level of RMS travel-time fit and the model roughness. The traveltime residuals, assessed at single depth levels, were used to derive the statistical lateral resolution of ''lens-shaped'' velocity anomalies. Thus, for the 95% confidence level and 5% anomalies, one can resolve their lateral sizes from 15 to 40 km at the depths from 0 to 20 km. The DRTG tomography succeeded in resolving a significant low-velocity zone (LVZ) bound to the Franconian lineament nearby the KTB site. It is shown that the next optimization of the model best updated during the DRTG iterations tends to a minimumfeature model with sweeping out any LVZs. The velocities derived by the depth-recursive tomography relate to the horizontal directions of wave propagation rather than to the vertical. This was proved at the KTB site where pronounced anisotropic behavior of a steeply tilted metamorphic rock complex of the ZEV unit has been previously determined. Involving a *7% anisotropy observed for the ''slow'' axis of symmetry oriented coincidentally in the horizontal SW-NE direction of the S01 profile, the DRTG velocity model agrees fairly well with the log velocities at the KTB site. Comparison with the reflectivity map obtained on the reflection seismic profile KTB8502 confirmed the validity of DRTG velocity model at maximum depths of *16 km. The DRTG tomography enabled us to follow the relationship of major geological units of Bohemian Massif as they manifested in the obtained P-wave velocity image down to 15 km. Although the contact of Saxothuringian and the Teplá-Barrandian Unit (TBU) is collateral with the S01 profile direction, several major tectonic zones are rather perpendicular to the Variscan strike and so fairly imaged in the S01 cross-section. They exhibit a weak velocity gradient of sub-horizontal directions within the middle crust. In particular, the Moldanubian and TBU contact beneath the Western Krušné hory/Erzgebirge Pluton, the buried contact of the Lusatia unit and the TBU within the Elbe fault zone were identified. The maxima on the 6,100 ms -1 isovelocity in the middle crust delimitated the known ultrabasic Erbendorf complex and implied also two next ultrabasic massi...
The refraction data from the SUDETES 2003 experiment were used for highresolution tomography along the profile S01. The S01 profile crosses the zone ErbendorfVohenstrauss (ZEV) near the KTB site, then follows the SW-NE oriented Eger Rift in the middle part and continues toward the NE across the Elbe zone and the Sudetic structures as far as the Trans-European Suture Zone. To get the best resolution in the velocity image only the first arrivals of Pg waves with minimum picking errors were used. The previous depth-recursive tomographic method, based on Claerbout's imaging principle, has been adapted to perform the linearized inversions in iterative mode. This innovative DRTG method (Depth-Recursive Tomography on Grid) uses a regular system of refraction rays covering uniformly the mapped domain. The DRTG iterations yielded a fine-grid velocity model with a required level of RMS travel-time fit and the model roughness. The traveltime residuals, assessed at single depth levels, were used to derive the statistical lateral resolution of ''lens-shaped'' velocity anomalies. Thus, for the 95% confidence level and 5% anomalies, one can resolve their lateral sizes from 15 to 40 km at the depths from 0 to 20 km. The DRTG tomography succeeded in resolving a significant low-velocity zone (LVZ) bound to the Franconian lineament nearby the KTB site. It is shown that the next optimization of the model best updated during the DRTG iterations tends to a minimumfeature model with sweeping out any LVZs. The velocities derived by the depth-recursive tomography relate to the horizontal directions of wave propagation rather than to the vertical. This was proved at the KTB site where pronounced anisotropic behavior of a steeply tilted metamorphic rock complex of the ZEV unit has been previously determined. Involving a *7% anisotropy observed for the ''slow'' axis of symmetry oriented coincidentally in the horizontal SW-NE direction of the S01 profile, the DRTG velocity model agrees fairly well with the log velocities at the KTB site. Comparison with the reflectivity map obtained on the reflection seismic profile KTB8502 confirmed the validity of DRTG velocity model at maximum depths of *16 km. The DRTG tomography enabled us to follow the relationship of major geological units of Bohemian Massif as they manifested in the obtained P-wave velocity image down to 15 km. Although the contact of Saxothuringian and the Teplá-Barrandian Unit (TBU) is collateral with the S01 profile direction, several major tectonic zones are rather perpendicular to the Variscan strike and so fairly imaged in the S01 cross-section. They exhibit a weak velocity gradient of sub-horizontal directions within the middle crust. In particular, the Moldanubian and TBU contact beneath the Western Krušné hory/Erzgebirge Pluton, the buried contact of the Lusatia unit and the TBU within the Elbe fault zone were identified. The maxima on the 6,100 ms -1 isovelocity in the middle crust delimitated the known ultrabasic Erbendorf complex and implied also two next ultrabasic massi...
In the accompanying paper (Part A), depth-recursive tomography was applied to the CEL09 refraction data. A deblurred P-wave velocity image was obtained down to a depth of 20 km. This paper (Part B) is devoted to the interpretation of the upper-and middle-crustal structures of the Bohemian Massif imaged in the CEL09 section. Because of inherent ambiguity of the refraction method in imaging low-velocity zones, other wellknown results based on other geophysical data sets are also used to independently verify the interpreted velocity features. Comparison with the density and velocity models previously obtained indicates that the presented P-wave velocity image has superior resolution revealing or verifying a number of geological features. The prominent lateral velocity changes encountered in the CEL09 pattern across the imaged crustal section were used to delineate the main terranes and deep regional fault zones such as the Krušné hory Fault, the SW continuation of the Litoměřice Fault Zone, the West and Central Bohemian Shear Zones, the Blanice-Rodl Fault, the Přibyslav-Vitis Fault and the Boskovice-Diendorf Fault. The 450-km-long CEL09 transect reveals seven major deeply rooted high-velocity (HV) anomalies identified as Variscan massifs intruded near or within these deep fault zones. They form buried ridges mostly parallel to the SW-NE trending Variscan strike. Their discovery allows new insights into a number of phenomena such as the West Bohemian earthquake swarms, the Saxothuringian paradox, the character of the SaxothuringianBarrandian contact zone, the detachment surface due to the slab of the Saxothuringian crust subducting beneath the Teplá-Barrandian zone in the Devonian, the depth extent of the Mariánské-Lázně Complex (MLC) as an equivalent unit of the Zone Erbendorf-Vohenstrauss (ZEV), the subsidence of the Barrandian syncline, the root zones of the Central and South Bohemian Plutons, the accretionary wedge formed along the Moravo-Moldanubian suture and its link with the Gföhl terrane, the Carpathian foreland relief and the subsidence observed in the Vienna Basin.Keywords Depth-recursive tomography on grid Á P-wave velocity image Á CEL09 refraction profile Á 9HR reflection profile Á Bohemian Massif Á Saxothuringian Á Mariánské M. Novotný (
The western part of the Bohemian Massif (West Bohemia/Vogtland region) is characteristic in the relatively frequent recurrence of intraplate earthquake swarms and in other manifestations of past-to-recent geodynamic activity. In this study we derived 1Danisotropic qP-wave model of the upper crust in the seismogenic West Bohemia/Vogtland region by means of joint inversion of two independent data sets -travel times from controlled shots and arrival times from local earthquakes extracted from the WEBNET seismograms. We derived also simple 1-D P-wave and S-wave isotropic models. Reasons for deriving these models were: (a) only simplified crustal velocity models, homogeneous half-space or 1D isotropic layered models of this region, have been derived up to now and (b) a significant effective anisotropy of the upper crust in the region which was indicated recently by S-wave splitting. Both our anisotropic qP-wave and isotropic P-and S-wave velocity models are constrained by four layers with the constant velocity gradient. Weak anisotropy for P-waves is assumed. The isotropic model is represented by 9 parameters and the anisotropic one is represented by 24 parameters. A new robust and effective optimization algorithm -isometric algorithm -was used for the joint inversion. A two-step inversion algorithm was used. During the first step the isotropic P-and S-wave velocity model was derived. In the second step, it was used as a background model and the parameters of anisotropy were sought.Our 1D models are adequate for the upper crust in the West Bohemia/Vogtland swarm region up to a depth of 15 km. The qP-wave velocity model shows 5% anisotropy, the minimum velocity in the horizontal direction corresponds to an azimuth of 170°. The isotropic model indicates the V P /V S ratio variation with depth. The difference between the hypocentre locations based on the derived isotropic and anisotropic models was found to be several hundreds of meters. K e y w o r d s : West Bohemia/Vogtland region, earthquake swarm, anisotropy, 1D velocity model, inverse problem, earthquake location Stud. Geophys. Geod., 49 (2005), 501−524 501 © 2005 StudiaGeo s.r.o., Prague J. Málek et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.