The insect odorant receptors (ORs) are amongst the largest gene families in insect genomes and the primary means by which insects recognize volatile compounds. The evolution of ORs is thus instrumental in explaining the chemical ecology of insects and as a model of evolutionary biology. However, although ORs have been described from numerous insect species, their analysis within and amongst the insect orders has been hindered by a combination of limited genomic information and a tendency of the OR family toward rapid divergence, gain, and loss. We addressed these issues in the insect order Coleoptera through a targeted genomic annotation effort that included 1181 ORs from one species of the sister order Strepsiptera and 10 species representing the four coleopteran suborders. The numbers of ORs in each species varied from hundreds to fewer than 10, but coleopteran ORs could nevertheless be represented within a scheme of nine monophyletic subfamilies. We observed many radiations and losses of genes amongst OR subfamilies, and the diversity of ORs appeared to parallel the host breadth of the study species. However, some small lineages of ORs persisted amongst many coleopteran families, suggesting receptors of key function that underlie the olfactory ecology of beetles.