Designed appropriately, multiphase softcore/hard-shell latex particles can achieve film formation without the addition of a coalescing aid, while preserving sufficient film hardness. Achieving optimal performance in these materials requires an understanding of how particle morphology affects film formation and stress development in the film. In this study, soft-core/hard-shell latex particles with different shell ratios, core and shell glass transition temperatures (T g s), and particle sizes (63-177 nm) were synthesized using a two-stage emulsion polymerization. The film formation behavior of the composite particles was investigated with cryogenic scanning electron microscopy, atomic force microscopy, and measurements of the minimum film formation temperature (MFFT). Results show that film formation was enhanced for particles with thinner hard shells, smaller particle size, and a smaller difference in T g between the core and shell polymers. For example, the MFFT decreased and the particle deformation increased for particles with thinner shells and smaller particle sizes. Stress development during drying was characterized using a cantilever beam bending technique. A walled cantilever design was used to monitor stress development without the complication of a lateral drying front. The film formation behavior and stress development correlated well with practical paint properties like scrub resistance and gloss.