Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single cell resolution. Here, we perform head-to-head comparisons between the transcriptomes of fresh primary (1 o ) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We find each population occupies a distinct transcriptomic space with cultured AEC2s (1 o and iAEC2s) exhibiting similarities to and differences from freshly purified 1 o cells. Across each cell type, we find an inverse relationship between proliferative and maturation states, with pre-culture 1 o AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2 do not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s co-cultured with fibroblasts acquires a "transitional cell state" described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1 o and engineered AEC2s, two in vitro models that can be harnessed to study human lung health and disease.