Conventional dry seed storage is unlikely for about one third of all tree species (and nearly half of evergreen rain forest trees) as they probably produce desiccation sensitive (recalcitrant) seeds. Consequently, international ex situ conservation targets for threatened trees will be difficult to achieve without innovation, especially in cryobiotechnology. We assessed progress in the development of various cryobiotechnology approaches for the preservation of oaks (Quercus), which are keystone species of functioning landscapes, important to the bioeconomy and under increasing threats from the spread of pests and diseases under a changing climate. Various tissues of oaks can be used for banking, from pollen grains to embryo axes. Pollen from five oak species have been shown to be highly desiccation tolerant, making dry pollen storage at low temperatures (including in liquid nitrogen) a valuable technology to support conservation and breeding programs. Somatic embryo (SE) technology and/or shoot tip in vitro technology is available for 39 species, and SE cryopreservation is routinely performed on three commercial species and shoot tips cryopreservation successful in two more species. Seed embryonic axes are the preferred explants for oak ex situ conservation, with tissue survival and regeneration of plants after cryopreservation recorded for 14 and seven species respectively; although differential responses between the shoot and root meristems in the axes are known. Dormant bud preservation seems promising, but is under-researched. Overall, these results indicate the possibility of establishing an integrated platform for the ex situ conservation of oak species based on cryobiotechnology. Challenges of explant choice, optimization of methodologies and large-scale application do remain. However, multiple approaches for the cryopreservation of oak genetic resources are available and implementation programmes should not be delayed, particularly in the centres of species diversity.