Baffin Bay is the travel destination of most icebergs calving from west Greenland. They commonly follow the bay's cyclonic circulation and might end up far south along the coast of Newfoundland and Labrador, where many shipping routes converge. Given the hazard that icebergs pose to marine transportation, understanding their distribution is fundamental. One of the forces driving iceberg drift arises from the presence of sea ice. Observations in the Southern Ocean indicate that icebergs get locked in thick and concentrated sea ice. We present observations that support the occurrence of this sea ice locking mechanism (SIL) in Baffin Bay as well. Most iceberg models, however, represent the sea ice force over an iceberg as a simple drag force. Here, we implement a new parameterization in the iceberg module of the Nucleus for European Modeling of the Ocean (NEMO‐ICB) to represent SIL. We show that, by using this new parameterization, icebergs are more likely to travel outside of the Baffin Island Current during winter, which is supported by satellite observations. There is a slight improvement in the representation of iceberg severity along the coast of Newfoundland and Labrador and a slight shift of iceberg melt toward this region and Lancaster Sound/Hudson Strait. Although the impacts of icebergs on sea ice are still not represented, and targeted observations are needed for model calibration regarding sea ice concentration thresholds from which icebergs get locked, we are confident that this model improvement takes iceberg modeling one step forward toward reality.