Cell-based models, such as organ-on-chips, can replace and inform in vivo (animal) studies for drug discovery, toxicology, and biomedical science, but most cannot be banked "ready to use" as they do not survive conventional cryopreservation with DMSO alone. Here, we demonstrate how macromolecular ice nucleators enable the successful cryopreservation of epithelial intestinal models supported upon the interface of transwells, allowing recovery of function in just 7 days post-thaw directly from the freezer, compared to 21 days from conventional suspension cryopreservation. Caco-2 cells and Caco-2/HT29-MTX cocultures are cryopreserved on transwell inserts, with chemically induced ice nucleation at warmer temperatures resulting in increased cell viability but crucially retaining the complex cellular adhesion on the transwell insert interfaces, which other cryoprotectants do not. Transepithelial electrical resistance measurements, confocal microscopy, histology, and whole-cell proteomics demonstrated the rapid recovery of differentiated cell function, including the formation of tight junctions. Lucifer yellow permeability assays confirmed that the barrier functions of the cells were intact. This work will help solve the long-standing problem of transwell tissue barrier model storage, facilitating access to advanced predictive cellular models. This is underpinned by precise control of the nucleation temperature, addressing a crucial biophysical mode of damage.