Abstract. Stem cells are an important tool for the study of hematopoiesis. Despite developments in cryopreservation, post-thaw cell death remains a considerable problem. Cryopreservation protocol should limit cell damage due to freezing and ensure the recovery of the functional cell characteristics after thawing. Thus, the use of cryoprotectants is essential. In particular, the efficacy of trehalose has been reported for clinical purposes in blood stem cells. The aim of the current study was to establish an efficient method for biological research based on the use of trehalose, to cryopreserve pure peripheral blood stem cells. The efficacy of trehalose was assessed in vitro and the cell viability was evaluated. The data indicate that trehalose improves cell survival after thawing compared with the standard freezing procedure. These findings could suggest the potential for future trehalose application for research purposes in cell cryopreservation.
IntroductionStem cells in biological research provide a significant source of information and, thus, contribute to the development of novel therapeutic strategies. In particular, the ability to cultivate stem cells and human hematopoietic progenitor cells in vitro is the fundamental basis for investigating hematopoiesis. An improved understanding of the mechanisms that regulate cell proliferation and differentiation during the stages of hematopoiesis would further elucidate the molecular characteristics of diseases (which are characterized by excessive expansion or a functional defect of certain immature blood components), and facilitate the identification of substances that are able to specifically protect healthy cells from the action of cytotoxic drugs.Hematopoietic stem and progenitor cells (HSPCs) may be isolated from peripheral blood (PB), bone marrow (BM) or umbilical cord blood (CB) (1).Although significant improvements to cell cryopreservation procedures have been achieved (2), the improvement of current cryopreservation protocols that lead to a high mortality rate after thawing for the crystal formations that arise during freezing is a primary goal. Specifically, fast cooling forms intracellular ice crystals, which results in cell destruction and slow cooling forms ice crystals in the extracellular space, with consequent cellular dehydration. Selection of a cryoprotectant, as well as a suitable freezing rate serves to protect cells from these adverse effects (3,4).Cryoprotectants are divided into two classes: Penetrating and nonpenetrating (5). The penetrating cryoprotectants include glycerol and 1,2-propanediol and dimethyl sulfoxide (Me 2 SO); the latter is commonly used for HSPC cryopreservation (6).The non penetrating cryoprotectants comprise polyvinyl pyrrolidone, trehalose, fructose, sucrose and glucose.Trehalose is a non-toxic disaccharide of glucose that preserves the structural integrity of the cells during freezing and thawing (7). Specifically, trehalose is found in numerous organisms, such as nematodes and yeasts, which are capable of surviving du...