The inflammasome is a multiprotein complex involved in innate immunity. Activation of the inflammasome causes the processing and release of the cytokines interleukins 1 and 18. In primary macrophages, potassium ion flux and the membrane channel pannexin 1 have been suggested to play roles in inflammasome activation. However, the molecular mechanism(s) governing inflammasome signaling remains poorly defined, and it is undetermined whether these mechanisms apply to the central nervous system. Here we show that high extracellular potassium opens pannexin channels leading to caspase-1 activation in primary neurons and astrocytes. The effect of K ؉ on pannexin 1 channels was independent of membrane potential, suggesting that stimulation of inflammasome signaling was mediated by an allosteric effect. The activation of the inflammasome by K Pannexin 1 is a vertebrate ortholog of the invertebrate innexin gap junction proteins (1), but it does not appear to form functional gap junctions in vivo. Instead pannexin 1 acts as a membrane channel that carries ions and signaling molecules between the cytoplasm and the extracellular space (2, 3). As such, it is a candidate ATP release channel in various cell types, including erythrocytes, astrocytes, bronchial epithelial cells, and taste cells. Various functional roles have been ascribed to pannexin 1 including local vascular perfusion control and propagation of intercellular calcium waves (4 -6). Recently pannexin 1 was also shown to form the large pore of the P2X7 purinergic receptor (7, 8). P2X7 plays a major role in inflammation, and its activation by extracellular ATP results in release of interleukin (IL) 2 -1 from macrophages, probably involving pannexin 1 as a signaling molecule (7).IL-1 production and maturation are tightly regulated by caspase-1 incorporated into large protein complexes termed inflammasomes (9 -11). The molecular composition of the inflammasome depends on the identity of the NOD-like receptor (NLR) family member serving as a scaffold protein in the complex (12). The members of the cytosolic NLR family appear to recognize conserved microbial and viral components termed pathogen-associated molecular patterns in intracellular compartments (13). The bipartite adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) bridges the interaction between NLR proteins and inflammatory caspases and plays a central role in the assembly of inflammasomes and the activation of caspase-1 in response to a broad range of pathogen-associated molecular patterns and intracellular pathogens (14). In addition, the inflammasome can be activated by danger-associated molecular patterns, molecules endogenous to the organism that signal stress or injury, including extracellular ATP acting at ionotropic P2X7 receptors, fibronectin, or monosodium urate crystals (15,16). Moreover it has been suggested that a rapid K ϩ efflux through ATP-activated P2X7 receptors induces inflammasome assembly (17)(18)(19)(20).Despite the recent advances in the understanding of a...