2020 IEEE Congress on Evolutionary Computation (CEC) 2020
DOI: 10.1109/cec48606.2020.9185728
|View full text |Cite
|
Sign up to set email alerts
|

Cryptanalysis of RSA: Integer Prime Factorization Using Genetic Algorithms

Abstract: In recent years, researchers have been exploring alternative methods to solving Integer Prime Factorization, the decomposition of an integer into its prime factors. This has direct application to cryptanalysis of RSA, as one means of breaking such a cryptosystem requires factorization of a large number that is the product of two prime numbers. This paper applies three different genetic algorithms to solve this issue, utilizing mathematical knowledge concerning distribution of primes to improve the algorithms. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 13 publications
0
3
0
1
Order By: Relevance
“…Algoritme RSA didasarkan pada masalah faktorisasi bilangan bulat (IFP), sedangkan Algoritme El-Gamal didasarkan pada masalah logaritma diskrit (DLP), keduanya memberikan kecepatan komputasi untuk kriptosistem asimetris dan bergantung pada kesulitan penyelesaian kedua masalah ini (Rutkowski & Houghten, 2020) (Rezal et al, 2018) (Meneses et al, 2016). IFP dari Algoritme RSA adalah kesulitan faktorisasi yang digunakan pada generate key Algoritme RSA (N=p x q) dan (e x d ≡1 mod Ф(N)).…”
Section: Pendahuluanunclassified
“…Algoritme RSA didasarkan pada masalah faktorisasi bilangan bulat (IFP), sedangkan Algoritme El-Gamal didasarkan pada masalah logaritma diskrit (DLP), keduanya memberikan kecepatan komputasi untuk kriptosistem asimetris dan bergantung pada kesulitan penyelesaian kedua masalah ini (Rutkowski & Houghten, 2020) (Rezal et al, 2018) (Meneses et al, 2016). IFP dari Algoritme RSA adalah kesulitan faktorisasi yang digunakan pada generate key Algoritme RSA (N=p x q) dan (e x d ≡1 mod Ф(N)).…”
Section: Pendahuluanunclassified
“…Another work shows the decomposition of the two prime numbers with the Pisano period factorization method, which has been proven to be a subexponential complexity method [74]. Several integer factorization methods have also suggested direct application to cryptanalysis of RSA by applying different genetic algorithms [75]. While genetic algorithms could be a promising avenue of research for integer factorization, they are computationally complex.…”
Section: Application Example 1 Let Us Consider Case Example 2 With N = 377mentioning
confidence: 99%
“…In the past two decades, integer factorization algorithms have evolved by improving existing ones to a great extent such that very large semi-primes of more than 250 decimal digits can be factorized with sufficient computing power [14][15][16][17]. Some of the famous integer factorization algorithms are Lenstra's elliptic curve algorithm [18], Pomerance's quadratic sieve, and the General Number Field Sieve [19,20].…”
Section: Introductionmentioning
confidence: 99%