Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We assessed the fungal and fungal-like sequence diversity present in marine sediments obtained in the vicinity of the South Shetland Islands (Southern Ocean) using DNA metabarcoding through high-throughput sequencing (HTS). A total of 193,436 DNA reads were detected in sediment obtained from three locations: Walker Bay (Livingston Island) at 52 m depth (48,112 reads), Whalers Bay (Deception Island) at 151 m (104,704) and English Strait at 404 m (40,620). The DNA sequence reads were assigned to 133 distinct fungal amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Glomeromycota, Monoblepharomycota, Mucoromycota and Rozellomycota and the fungal-like Straminopila. Thelebolus balaustiformis, Pseudogymnoascus sp., Fungi sp. 1, Ciliophora sp., Agaricomycetes sp. and Chaetoceros sp. were the dominant assigned taxa. Thirty-eight fungal ASVs could only be assigned to higher taxonomic levels, and may represent taxa not currently included in the available databases or represent new taxa and/or new records for Antarctica. The total fungal community displayed high indices of diversity, richness and moderate to low dominance. However, diversity and taxa distribution varied across the three sampling sites. In Walker Bay, unidentified fungi were dominant in the sequence assemblage. Whalers Bay sediment was dominated by Antarctic endemic and cold-adapted taxa. Sediment from English Strait was dominated by Ciliophora sp. and Chaetoceros sp. These fungal assemblages were dominated by saprotrophic, plant and animal pathogenic and symbiotic taxa. The detection of an apparently rich and diverse fungal community in these marine sediments reinforces the need for further studies to characterize their richness, functional ecology and potential biotechnological applications.
We assessed the fungal and fungal-like sequence diversity present in marine sediments obtained in the vicinity of the South Shetland Islands (Southern Ocean) using DNA metabarcoding through high-throughput sequencing (HTS). A total of 193,436 DNA reads were detected in sediment obtained from three locations: Walker Bay (Livingston Island) at 52 m depth (48,112 reads), Whalers Bay (Deception Island) at 151 m (104,704) and English Strait at 404 m (40,620). The DNA sequence reads were assigned to 133 distinct fungal amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Glomeromycota, Monoblepharomycota, Mucoromycota and Rozellomycota and the fungal-like Straminopila. Thelebolus balaustiformis, Pseudogymnoascus sp., Fungi sp. 1, Ciliophora sp., Agaricomycetes sp. and Chaetoceros sp. were the dominant assigned taxa. Thirty-eight fungal ASVs could only be assigned to higher taxonomic levels, and may represent taxa not currently included in the available databases or represent new taxa and/or new records for Antarctica. The total fungal community displayed high indices of diversity, richness and moderate to low dominance. However, diversity and taxa distribution varied across the three sampling sites. In Walker Bay, unidentified fungi were dominant in the sequence assemblage. Whalers Bay sediment was dominated by Antarctic endemic and cold-adapted taxa. Sediment from English Strait was dominated by Ciliophora sp. and Chaetoceros sp. These fungal assemblages were dominated by saprotrophic, plant and animal pathogenic and symbiotic taxa. The detection of an apparently rich and diverse fungal community in these marine sediments reinforces the need for further studies to characterize their richness, functional ecology and potential biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.