A tetracycline-controlled expression system was adapted to the human promyelocytic HL-60 cell line by placement of the transactivator (tTA-off) sequence under the control of the human EF-1␣ promoter region. Constitutively active and dominant-inhibitory forms of Cdc42 (Cdc42V12 and Cdc42N17, respectively) were conditionally expressed in this system. The expression of Cdc42V12 had no marked effect on chemoattractant-mediated superoxide production, corroborating previous results indicating that the guanosine 5-triphosphate (GTP)-bound form of Cdc42 is ineffective in directly activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in a cell-free system. However, the N17 mutant potently inhibited chemoattractant-induced superoxide production. The expression of Cdc42N17 interfered with the GTP-loading of Rac and Ras and with the activation of the MAP-kinase pathway. A drastic reduction of chemoattractant-induced inositol-1,4,5-trisphosphate formation and calcium mobilization was observed, corroborating previous in vitro study results identifying PLC2 as a Rac/Cdc42 effector. Cdc42N17 was also found to inhibit the translocation of Ras-GRF2, a guanine nucleotide exchange factor for Ras and Rac but not for Cdc42. Thus, the dominant-inhibitory mutant Cdc42N17 was found to interfere at multiple levels in the signaling pathways. The pleiotropic inhibitory effects of Cdc42N17 illustrate the potential pitfalls of using dominant-inhibitory proteins to study the function of Ras-family GTPases. In this regard, a number of conclusions drawn from the use of dominant-inhibitory mutants in myeloid cells might have to be reconsidered.
IntroductionTransendothelial migration of leukocytes and their accumulation at sites of inflammation are of particular importance for host defense against invading pathogens. Chemotactic factors, including the N-formyl peptides, C5a, and interleukin-8 (IL-8), which bind to specific heterotrimeric G-protein-coupled transmembrane receptors, regulate cell migration and activate microbicidal and cytotoxic functions through the release of proteolytic enzymes from specific granules and the generation of superoxide anions by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Activation of this enzyme proceeds through a multistep assembly of several components including the 2 transmembrane subunits of cytochrome b 558 (p22 phox and gp91 phox ) and 4 cytosolic proteins (p47 phox , p67 phox , p40 phox , and the small GTPase Rac). 1,2 The triggering and control of bactericidal functions require a coordinated activation of several signaling pathways, namely the activation of tyrosine kinases, phospholipases (PLC2, PLD, and PLA 2 ), phosphatidylinositol 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades. 3 Low-molecular-weight GTPases are key regulators of a wide spectrum of cellular functions. [4][5][6][7] The binding of guanine nucleotide regulates all members of the Ras-superfamily. Activation of GTPases through guanosine 5Ј-diphosphate (GDP)-GTP exchange is prom...