In the present study, we undertook a molecular epidemiological survey of Cryptosporidium and Giardia in calves on three dairy and two beef farms within an open drinking water catchment area (Melbourne, Australia). Faecal samples (n = 474) were collected from calves at two time points (5 months apart) and tested using a PCR-based mutation scanning-targeted sequencing phylogenetic approach, employing regions within the genes of small subunit (SSU) of ribosomal RNA (designated partial SSU), 60 kDa glycoprotein (pgp60) and triose phosphate isomerase (ptpi) as genetic markers. Using partial SSU, the C. bovis, C. parvum, C. ryanae and a new genotype of Cryptosporidium were characterised from totals of 74 (15.6%), 35 (7.3%), 37 (7.8%) and 9 (1.9%) samples, respectively. Using pgp60, C. parvum genotype IIa subgenotype A18G3R1 was detected in 29 samples. Using ptpi, G. duodenalis assemblages A and E were detected in totals of 10 (2.1%) and 130 (27.4%) samples, respectively. The present study showed that a considerable proportion of dairy and beef calves in this open water catchment region excreted Cryptosporidium (i.e. subgenotype IIaA18G3R1) and Giardia (e.g. assemblage A) that are consistent with those infecting humans, inferring that they are of zoonotic importance. Future work should focus on exploring, in a temporal and spatial way, whether these parasites occur in the environment and water of the catchment reservoir.