Cryptosporidium
is a protozoan parasite of global public health importance that causes gastroenteritis in a variety of vertebrate hosts, with many human outbreaks reported yearly, often from ingestion of contaminated water or food. Despite the major public health implications, little is typically known about sources of contamination of disease outbreaks caused by
Cryptosporidium.
Here, we study a national foodborne outbreak resulted from infection with
Cryptosporidium parvum
via romaine lettuce, with the main goal to trace the source of the parasite. To do so, we combined traditional outbreak investigation methods with molecular detection and characterization methods (i.e. PCR based typing, amplicon and shotgun sequencing) of romaine lettuce samples collected at the same farm from which the contaminated food was produced. Using 18S rRNA typing, we detected
C. parvum
in two out of three lettuce samples, which was supported by detections in the metagenome analysis. Microbial source tracking analysis of the lettuce samples suggested sewage water as a likely source of the contamination, albeit with some uncertainty. In addition, the high degree of overlap in bacterial species content with a public human gut microbial database corroborated the source tracking results. The combination of traditional and molecular based methods applied here is a promising tool for future source tracking investigations of food- and waterborne outbreaks of
Cryptosporidium
spp. and can help to control and mitigate contamination risks.