Phycocyanin (PC) is a naturally occurring green pigment in Spirulina. It was extracted by ultrasonic extraction using green technology, and its structure was studied using IR- and NMR-spectroscopy. Spectral data confirmed the PC structure. This study also involves an in silico assessment of the diverse applications of green pigment PC. Utilizing QSAR, PreADME/T, SwissADME, and Pro-Tox, this study explores the safety profile, pharmacokinetics, and potential targets of PC. QSAR analysis reveals a favorable safety profile, with the parent structure and most metabolites showing no binding to DNA or proteins. PreADME/T indicates low skin permeability, excellent intestinal absorption, and medium permeability, supporting oral administration. Distribution analysis suggests moderate plasma protein binding and cautious blood–brain barrier permeability, guiding formulation strategies. Metabolism assessments highlight interactions with key cytochrome P450 enzymes, influencing drug interactions. Target prediction analysis unveils potential targets, suggesting diverse therapeutic effects, including cardiovascular benefits, anti-inflammatory activities, neuroprotection, and immune modulation. Based on the in silico analysis, PC holds promise for various applications due to its safety, bioavailability, and potential therapeutic benefits. Experimental validation is crucial to elucidate precise molecular mechanisms, ensuring safe and effective utilization in therapeutic and dietary contexts. DFT calculations, including geometry optimization, MEP analysis, HOMO-LUMO energy surface, and quantum reactivity parameters of the PC compound, were obtained using the B3LYP/6–311G(d,p) level. This integrated approach contributes to a comprehensive understanding of PC’s pharmacological profile and informs future research directions.