The need for miniaturised reaction systems has led to the development of various microreactor platforms, such as droplet-based microreactors. However, these microreactors possess inherent drawbacks, such as rapid evaporation and difficult handling, that limit their use in practical applications. Liquid marbles are droplets covered with hydrophobic particles and are a potential platform that can overcome the weaknesses of bare droplets. The coating particles completely isolate the interior liquids from the surrounding environment, thus conveniently encapsulating the reactions. Great efforts have been made over the past decade to demonstrate the feasibility of liquid marble-based microreactors for chemical and biological applications. This review systemically summarises state-of-the-art implementations of liquid marbles as microreactors. This paper also discusses the various aspects of liquid marble-based microreactors, such as the formation, manipulation, and future perspectives.