The esterases and lipases from the ␣/ hydrolase superfamily exhibit an enormous sequence diversity, fold plasticity, and activities. Here, we present the comprehensive sequence and biochemical analyses of seven distinct esterases and lipases from the metagenome of Lake Arreo, an evaporite karstic lake in Spain (42°46=N, 2°59=W; altitude, 655 m). Together with oligonucleotide usage patterns and BLASTP analysis, our study of esterases/lipases mined from Lake Arreo suggests that its sediment contains moderately halophilic and cold-adapted proteobacteria containing DNA fragments of distantly related plasmids or chromosomal genomic islands of plasmid and phage origins. This metagenome encodes esterases/lipases with broad substrate profiles (tested over a set of 101 structurally diverse esters) and habitat-specific characteristics, as they exhibit maximal activity at alkaline pH (8.0 to 8.5) and temperature of 16 to 40°C, and they are stimulated (1.5 to 2.2 times) by chloride ions (0.1 to 1.2 M), reflecting an adaptation to environmental conditions. Our work provides further insights into the potential significance of the Lake Arreo esterases/lipases for biotechnology processes (i.e., production of enantiomers and sugar esters), because these enzymes are salt tolerant and are active at low temperatures and against a broad range of substrates. As an example, the ability of a single protein to hydrolyze triacylglycerols, (non)halogenated alkyl and aryl esters, cinnamoyl and carbohydrate esters, lactones, and chiral epoxides to a similar extent was demonstrated. E sterases and lipases from the ␣/ hydrolase family have received considerable attention, because they are widely distributed within the microbial communities operating in most of environments where they have important physiological functions (1) and because they are one of the most important groups of biocatalysts for biotechnological applications (2-4). Upon searching the list of genes using Pfam (the protein family database [5]) from the approximately 140 metagenomic projects in various stages of sequencing on the GOLD website (Genomes OnLine Database; http://www.genomesonline.org/) and the available sequences of esterases and lipases, more than 72,000 predicted esterases/lipases of the ␣/ hydrolase superfamily were retrieved, which revealed the richness of uncultured biodiversity (6), to provide wide collections of such biocatalysts. This is one of the largest protein families with available sequences. In relation to the cultivation-independent methods used to identify them, it should be highlighted that sequence-based metagenomics only provide the presumptive compositional and functional blueprint represented in the community genome (7,8), but at the same time, this method causes serious problems regarding both sequencing errors (9) and the erroneous assignment of substrate specificity (10). In contrast, the activity-directed techniques have been shown to provide a direct view of known or new protein families and functionalities (for examples, see referen...