A new 1,3-oxathiolane-based ligand, 2-(1,3-oxathiolan-2-yl)pyridine, was prepared and its coordination to lead(II) was investigated. Experiments revealed a ligand-breaking reaction during the complexation process, which leads to the formation of a 2D-coordination polymer of lead(II), [Pb(μ3-HME)(μ-OAc)]n; H2ME: 2-mercaptoethanol. The compounds have been characterized by elemental analysis, FT-IR, 1H NMR spectroscopy and single-crystal X-ray diffraction. X-ray analysis revealed a 2D-coordination polymer extending via acetato bridges. The lead(II) center adopts a rare PbO4S3-distorted pentagonal bipyramidal geometry with a hemidirected arrangement. Upon coordination, the thiol group of the H2ME ligand is deprotonated to coordinate as an anionic ligand. The network extends in sheets in the crystallographic ab plane via Pb–S–Pb and Pb–O–Pb bridges, aided by O–H⋯O hydrogen bonds.