Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Intracellular polyamines are endogenous blockers of inwardly rectifying potassium (Kir) channels and underlie steeply voltagedependent rectification. Kir channels with strong polyamine sensitivity typically carry a negatively charged side chain at a conserved inner cavity position, although acidic residues at any pore-lining position in the inner cavity are sufficient to confer polyamine block. We have identified unique consequences of a glutamate substitution in the region of the helix bundle crossing of Kir6.2. Firstly, glutamate substitution at Kir6.2 residue F168 generates channels with intrinsic inward rectification that does not require blockade by intracellular polyamines or Mg 21 . In addition, these F168E channels exhibit a unique "spiked" tail phenotype, whereby large decaying inward tail currents are elicited upon spermine unbinding. This contrasts with the time-dependent recovery of current typically associated with blocker unbinding from ion channels. Interestingly, Kir6.2[F168E] channels exhibit a paradoxical biphasic conductance-voltage relationship in the presence of certain polyamines. This reflects channel blockade at positive voltages, channel stimulation at intermediate voltages, and exclusion of spermine from the pore at negative voltages. These features are recapitulated by a simple kinetic scheme in which weakly voltage-dependent spermine binding to a "shallow" site in the pore (presumably formed by the introduced glutamate at F168E) stabilizes opening of the bundle crossing gate. These findings illustrate the potential for dichotomous effects of a blocker in a long pore (with multiple binding sites), and offer a unique example of targeted modulation of the Kir channel gating apparatus.
Intracellular polyamines are endogenous blockers of inwardly rectifying potassium (Kir) channels and underlie steeply voltagedependent rectification. Kir channels with strong polyamine sensitivity typically carry a negatively charged side chain at a conserved inner cavity position, although acidic residues at any pore-lining position in the inner cavity are sufficient to confer polyamine block. We have identified unique consequences of a glutamate substitution in the region of the helix bundle crossing of Kir6.2. Firstly, glutamate substitution at Kir6.2 residue F168 generates channels with intrinsic inward rectification that does not require blockade by intracellular polyamines or Mg 21 . In addition, these F168E channels exhibit a unique "spiked" tail phenotype, whereby large decaying inward tail currents are elicited upon spermine unbinding. This contrasts with the time-dependent recovery of current typically associated with blocker unbinding from ion channels. Interestingly, Kir6.2[F168E] channels exhibit a paradoxical biphasic conductance-voltage relationship in the presence of certain polyamines. This reflects channel blockade at positive voltages, channel stimulation at intermediate voltages, and exclusion of spermine from the pore at negative voltages. These features are recapitulated by a simple kinetic scheme in which weakly voltage-dependent spermine binding to a "shallow" site in the pore (presumably formed by the introduced glutamate at F168E) stabilizes opening of the bundle crossing gate. These findings illustrate the potential for dichotomous effects of a blocker in a long pore (with multiple binding sites), and offer a unique example of targeted modulation of the Kir channel gating apparatus.
This essay is based on a lecture given to the American Physiological Society in honor of Walter B. Cannon, an advocate of homeostasis. It focuses on the role of the ATP-sensitive potassium K(+) (K(ATP)) channel in glucose homeostasis and, in particular, on its role in insulin secretion from pancreatic beta-cells. The beta-cell K(ATP) channel comprises pore-forming Kir6.2 and regulatory SUR1 subunits, and mutations in either type of subunit can result in too little or too much insulin release. Here, I review the latest information on the relationship between K(ATP) channel structure and function, and consider how mutations in the K(ATP) channel genes lead to neonatal diabetes or congenital hyperinsulinism.
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.