We synthesized a series of CoFe Prussian blue analogues along which we tuned the amount of cesium cations inserted in the tetrahedral sites of the structure. Structure and electronic structure have been investigated, combining XANES, infrared spectroscopy, powder X-ray diffraction experiments, and magnetization measurements. The change of the magnetization induced by light along the series shows that the efficiency of the photoinduced magnetization, evidenced a few years ago in similar compounds by Hashimoto et al. (Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 272, 704-705; Sato, O.; Einaga, Y.; Iyoda, T.; Fujishima, A.; Hashimoto, K. J. Electrochem. Soc. 1997, 144, L11-L13; Sato, O.; Einaga, Y.; Iyoda, T.; Fujishima, A.; Hashimoto, K. J. Phys. Chem. B 1997, 101, 3903-3905; Einaga, Y.; Ohkoshi, S.-I.; Sato, O.; Fujishima, A.; Hashimoto, K. Chem. Lett. 1998, 585-586; and Sato, O.; Einaga, Y.; Fujishima, A.; Hashimoto, K. Inorg. Chem. 1999, 38, 4405-4412), depends on a compromise between the number of excitable diamagnetic pairs and the amount of [Fe(CN)6] vacancies giving the network flexibility. Besides the efficiency of the photoinduced process, the amount of [Fe(CN)6] vacancies also controls a thermally induced electron transfer.