Pyranose 2-oxidase (P2Ox) participates in fungal lignin degradation by producing the H 2 O 2 needed for lignin-degrading peroxidases. The enzyme oxidizes cellulose-and hemicellulose-derived aldopyranoses at C2 preferentially, but also on C3, to the corresponding ketoaldoses. To investigate the structural determinants of catalysis, covalent flavinylation, substrate binding, and regioselectivity, wild-type and mutant P2Ox enzymes were produced and characterized biochemically and structurally. Removal of the histidyl-FAD linkage resulted in a catalytically competent enzyme containing tightly, but noncovalently bound FAD. This mutant (H167A) is characterized by a 5-fold lower k cat , and a 35-mV lower redox potential, although no significant structural changes were seen in its crystal structure. In previous structures of P2Ox, the substrate loop (residues 452-457) covering the active site has been either disordered or in a conformation incompatible with carbohydrate binding. We present here the crystal structure of H167A in complex with a slow substrate, 2-fluoro-2-deoxy-D-glucose. Pyranose 2-oxidase (P2Ox, 3 pyranose:oxygen 2-oxidoreductase; glucose 2-oxidase; EC 1.1.3.10) is a flavin adenine dinucleotide (FAD)-dependent oxidase present in the hyphal periplasmic space (1) of wood-degrading basidiomycetes (2, 3). These fungi are the only known microorganisms that are capable of fully mineralizing lignin, and P2Ox has a proposed role in the oxidative events (4) of lignin degradation by providing the essential co-substrate, H 2 O 2 , for lignin and manganese peroxidases (5, 6). An alternative hypothesis assigns a role for P2Ox in both H 2 O 2 production and in the reduction of quinones in the periplasm or in the extracellular environment (7). P2Ox from the white-rot fungi Trametes multicolor (Trametes ochracea) and Peniophora gigantea are hitherto the most studied biochemically (7-10) and structurally (11, 12).P2Ox oxidizes a broad range of carbohydrate substrates that are natural constituents of hemicelluloses, allowing most lignocellulose-derived sugars to be utilized. Substrates can be oxidized regioselectively at the C2 position, although some oxidation at C3 can occur as a side reaction (10). For C2 oxidation, D-glucose, D-xylose, and L-sorbose are good or reasonably good substrates, and D-galactose and L-arabinose perform poorly as substrates (7). Based on the catalytic efficiency, k cat /K m , D-glucose (D-Glc) is the best substrate for T. multicolor P2Ox (7). Substrates that are oxidized at C3 were analyzed for P. gigantea P2Ox and include 2-deoxy-D-glucose, 2-keto-D-glucose, and methyl -D-glucosides (13, 10). That oxidation can take place either at C2 or at C3 presupposes two distinct, productive binding modes (referred to here as C2 ox and C3 ox ) for a monosaccharide in the P2Ox active site.P2Ox from T. multicolor is homotetrameric with a molecular mass of 270 kDa (7) where each of the four subunits carries one FAD molecule bound covalently to N ⑀2 (i.e. N3) of His 167 via its 8␣-methyl group (14, 11). The...