Reaction of M(MeCO2)2 (M = Zn(II), Cd(II), and Hg(II)) with 1,3-benzodioxole-5-carboxylic acid (HPip) in methanol (MeOH) yields four piperonylate compounds, one of Zn(II) ([Zn(Pip)2(H2O)2] (1c)), two of Cd(II) ([Cd(μ-Pip) 2(H2O)]n (2) and [Cd3(μ-Pip)6(MeOH)2]n (3)), and one of Hg(II) ([Hg(μ-Pip) 2]n (4)). The obtention of compounds 1c and 4 was independent of the M/L ratio. These four compounds were characterized by analytical and spectroscopic techniques. In addition, the thermal stability of 1c, 2, and 4 has been studied, and the structure of all the complexes has been determined by the single crystal X-ray diffraction method. The Zn(II) compound displayed a monomeric structure, while Cd(II) and Hg(II) complexes exhibited three polymeric arrays. The Zn(II) (1c) and Hg(II) (4) centers are four-and eight-coordinated in a tetrahedral or squareantiprism geometry, respectively. Furthermore, the Cd(II) ions are either six-(2) or six-and seven-(3) coordinated in a octahedral or both octahedral and pentagonal bipyramid geometries, respectively. In these compounds, the Pip ligand presents different coordination modes: μ1-η1 (1c); μ2-η1:η1 and μ2-η2:η1 (2); μ2-η1:η1, μ2-η2:η1 and μ3-η2:η1:η1 (3); μ1-η2 and μ2-η2:η1 (4). The extended structures were also analyzed. Their photoluminescence properties have been examined, and the quantum yields have been calculated.