The investigation of protein quaternary structure, protein-cofactor, and protein-ligand interactions by mass spectrometry is often limited by the fragility of such interactions under experimental conditions. To develop more gentle conditions of perhaps general use, we used as a model for study the oxygenase domain of murine inducible nitric oxide synthase (iNOS), which is homodimeric, binds heme and tetrahydrobiopterin H 4 B cofactors, and the substrate L-arginine. The energetics of the collisions in q2 and in the lens region of the mass spectrometer were manipulated for varying the degree of solvation around the non-covalently bound ions. Furthermore, the number of low-energy collisions in the collision cell of the instrument was varied, focusing and dampening the ion beam. Under gentle source collision conditions, and using multiple low-energy collisions in the collision cell of the mass spectrometer, dimers of the iNOS oxygenase domain containing heme, H 4 B, and arginine were observed intact after electrospraying at pH values near neutrality; a mutant of this protein (Trp188 3 Phe) was monomeric and did not bind cofactors. The pH dependence of the iNOS oxygenase domain under acidic conditions was also studied; while heme remained bound to the protein between pH 2.5 and 4.0, the dimeric structure was disrupted. Our findings confirm that non-covalently bound macromolecular complexes are retained and observable using electrospray mass spectrometry under the appropriate experimental conditions. (J Am Soc Mass Spectrom 2004, 15, 629 -638)