The trivalent lanthanide bis-hydroxychloride compounds, Ln(OH)(2)Cl, (Ln = Nd through Lu, with the exception of Pm and Sm) have been prepared by hydrothermal synthesis starting with LnCl(3).nH(2)O. These compounds were synthesized at temperatures not exceeding the melting point of the Teflon liners in the Parr autoclaves ( approximately 220 degrees C). The compounds obtained were characterized by single crystal X-ray diffraction analysis, diffuse reflectance, FT-IR, and FT-Raman spectroscopies. Most of the lanthanide(III) bis-hydroxychlorides are isostructural and generally crystallize in the monoclinic space group P2(1)/m. The bis-hydroxychlorides of the heavier lanthanide(III) atoms with smaller ionic radii also crystallize in the orthorhombic crystal system. Apparently hydrogen bonds between the OH groups and the Cl atoms connect the layers in the "c" direction. These H-bonds seem to be the driving force for the angle beta of the monoclinic complexes to decrease with decreasing ionic radius of the Ln(III) ion and also for tying the layers together more strongly. As a result of this behavior, the structure of the heavier 4f analogues significantly resembles that of their orthorhombic counterparts. The heavier lanthanide bis-hydroxychlorides preferentially crystallize in the orthorhombic modification. The IR absorbance and Raman frequencies of the hydroxide ligands correlate as a function of the central lanthanide(III) ionic radius. This observation is corroborated by X-ray diffraction (XRD) structural data. These compounds are quite insoluble in near-neutral and basic aqueous solutions, but soluble in acidic solutions. It is expected that the analogue actinide bis-hydroxychlorides exhibit similar behavior and that this may have important implications in the immobilization and safe disposal of nuclear waste.