Chalcogenide Ge2Sb2Te5 thin films have been widely exploited as binary bit recording materials in optical and non-volatile electronic information storage, where the crystalline and amorphous states are marked as the information bits “0” and “1”, respectively. In this work, we demonstrate the use of Ge2Sb2Te5 thin films as multi-level grayscale image recording materials. High-resolution grayscale images are recorded on Ge2Sb2Te5 thin films through taking advantage of laser-induced structural evolution characteristic. Experimental results indicate that the change of laser energy results in the structural evolution of Ge2Sb2Te5 thin films. The structural evolution induces the difference of electronic polarizability and reflectivity, and high-resolution grayscale images are recorded on Ge2Sb2Te5 thin films through direct laser writing method, accordingly.