This work addresses the adsorption of benzothiophene (BT), as a model heterocyclic and aromatic sulphur compound present in road fuels, over agglomerated zeolites with faujasite structure. Several adsorbents based on zeolites with FAU structure have been prepared with different Si/Al molar ratios and exchange cations and then agglomerated. The influence of the zeolite basicity has been studied, both in equilibrium and dynamic liquid phase adsorption experiments. Basicity of the adsorbent increased as the Si/Al molar ratio and the electronegativity of the exchange cation decreased. In equilibrium experiments, the affinity towards the adsorbent increased as the Si/Al molar ratio decreased, showing the highest affinity for exchanged low silica X zeolites with medium basicity (A-KLSX-02). Dynamic experiments showed that the less zeolite basicity, the higher fractional bed utilization and adsorption capacity at breakthrough time. Besides, zeolites with high basicity did not reach the equilibrium capacity due to the low diffusivity of BT into the micropores. Thermogravimetric analyses of the spent adsorbents showed a stronger BT adsorption onto the more basic zeolites. As main conclusion, adsorbents with medium basicity could present the best performance in fuel desulphurization due to their high affinity with sulphur compounds, although diffusion problems should be taken into account.