The degree of crystallinity of a set of monoclinic (alpha) isotactic poly(propylenes), prepared by a metallocene‐type catalyst, were determined at room temperature. Three different methods were used: density, enthalpy of fusion, and wide‐angle X‐ray scattering, and the results compared. The relation between the heat of fusion and the specific volume of these poly(propylenes) was found to be nonlinear, thus precluding any linear extrapolation to obtain the heat of fusion of the pure crystal (ΔHu). The value of ΔHu obtained from depression of the melting temperature by diluents is used. Based on the unit cell density of monoclinic crystals formed from a low defected fraction, the density obtained crystallinity levels were found to be between 0.l5–0.25 higher than those calculated from the heat of fusion. This relatively large difference holds for the isothermally crystallized and quenched isotactic poly(propylenes), and reflects the contribution of the interphase to the density determined crystallinity, which does not contribute to the heat of fusion. Paralleling results found in other systems, the crystallinity levels obtained from wide‐angle X‐ray scattering agree with those obtained from density, indicating a significant contribution of the partially ordered phase to the total diffraction. Emphasis is given on the need to account for the large differences in the crystallinities of poly(propylene) measured by different techniques when evaluating the dependence of properties on this quantity. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 323–334, 1999