Previous earthquake polarization (as the ratio of vertical and horizontal components) studies using geomagnetic data were all performed with ground data. The advantage of satellite data is that it is not limited by geography. Therefore, in this work, we tried to select 12 typical earthquakes in Northeast Asia with Ms > 5.0 and an epicenter depth ≤ 40 km within the longitude 105° E–145° E and latitude 38° N–58° N ranges from December 2018 to January 2023 for analysis by using the satellite data of the high-precision magnetometer (HPM) payload onboard the China Seismo-Electromagnetic Satellite (CSES) for the first time in a quiet magnetic environment. The geomagnetic three-component vector data were investigated, and the minimum study period was divided into 10 s intervals. Fourier transform was performed to obtain 0.01–0.2 Hz geomagnetic three-component dynamic spectra, and the time series of the polarization (as the ratio of vertical and horizontal components) data was then obtained. The average value of the polarization data over four years was used to obtain the time series of the polarization perturbation amplitude, after which joint research was conducted. The results showed that (1) earthquakes with larger magnitudes are more likely to exhibit anomaly perturbations recorded by satellites; (2) among all earthquakes with anomalies, the horizontal east–west component perturbation is the largest, the vertical component perturbation is the smallest, and the east–west component may be the dominant component in seismic anomaly observations; (3) the applicability of the polarization method to space-based earthquake-related data is limited; (4) the perturbation amplitude of polarization data can be used as a reference for extracting seismic anomalies; and (5) ion velocity Vx data from the plasma analyzer package (PAP) can be considered to approximately verify the physical mechanism of the anomaly perturbation of the horizontal component in the ionospheric magnetic field, and the two kinds of data (PAP and HPM) can be combined in seismic prediction research.