Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this study, CoCrFeNiYx (x = 0, 0.1, 0.2, 0.3) high entropy alloy (HEA) coatings were produced on Ti6Al4V by laser cladding. The influence of Y on the microstructure and mechanical properties of CoCrFeNi HEA coatings was systematically examined. The analysis uncovered that the coatings primarily consist of three principal phases: α(Ti), Ti2Ni, and TiC. The incorporation of Y led to enhanced lattice distortion, which positively influenced solid solution strengthening. Moreover, grain refinement resulted in a denser microstructure, significantly reducing internal defects and thereby enhancing the coating’s performance. The average microhardness of the CoCrFeNiY0.2 coating was 702.46 HV0.2. The wear rates were 1.16 × 10−3 mm3·N−1·m−1 in air and 3.14 × 10−3 mm3·N−1·m−1 in a neutral solution, which were 27.0% and 30.8% lower than those of the CoCrFeNi coatings, respectively, indicating superior wear resistance. The Y content in the CoCrFeNiY0.3 coating was excessively high, resulting in the formation of Y-rich clusters. The accumulation of these impurities at the grain boundaries led to crack and pore formation, thereby reducing the wear resistance of the coating. Our study demonstrated that laser cladding an optimal amount of Y-doped CoCrFeNi HEA coatings on the Ti6Al4V substrate significantly enhanced the microstructure and mechanical properties of the substrate, particularly its wear resistance in both air and neutral environments, thereby improving the durability and reliability of titanium alloys in practical applications.
In this study, CoCrFeNiYx (x = 0, 0.1, 0.2, 0.3) high entropy alloy (HEA) coatings were produced on Ti6Al4V by laser cladding. The influence of Y on the microstructure and mechanical properties of CoCrFeNi HEA coatings was systematically examined. The analysis uncovered that the coatings primarily consist of three principal phases: α(Ti), Ti2Ni, and TiC. The incorporation of Y led to enhanced lattice distortion, which positively influenced solid solution strengthening. Moreover, grain refinement resulted in a denser microstructure, significantly reducing internal defects and thereby enhancing the coating’s performance. The average microhardness of the CoCrFeNiY0.2 coating was 702.46 HV0.2. The wear rates were 1.16 × 10−3 mm3·N−1·m−1 in air and 3.14 × 10−3 mm3·N−1·m−1 in a neutral solution, which were 27.0% and 30.8% lower than those of the CoCrFeNi coatings, respectively, indicating superior wear resistance. The Y content in the CoCrFeNiY0.3 coating was excessively high, resulting in the formation of Y-rich clusters. The accumulation of these impurities at the grain boundaries led to crack and pore formation, thereby reducing the wear resistance of the coating. Our study demonstrated that laser cladding an optimal amount of Y-doped CoCrFeNi HEA coatings on the Ti6Al4V substrate significantly enhanced the microstructure and mechanical properties of the substrate, particularly its wear resistance in both air and neutral environments, thereby improving the durability and reliability of titanium alloys in practical applications.
Perovskite solar cells (PSCs) are gaining prominence in the photovoltaic industry due to their exceptional photoelectric performance and low manufacturing costs, achieving a significant power conversion efficiency of 26.4%, which closely rivals that of silicon solar cells. Despite substantial advancements, the effective area of high-efficiency PSCs is typically limited to about 0.1 cm2 in laboratory settings, with efficiency decreasing as the area increases. The limitation poses a major obstacle to commercialization, as large-area, high-quality perovskite films are crucial for commercial applications. This paper reviews current techniques for producing large-area perovskites, focusing on slot-die coating, a method that has attracted attention for its revolutionary potential in PSC manufacturing. Slot-die coating allows for precise control over film thickness and is compatible with roll-to-roll systems, making it suitable for large-scale applications. The paper systematically outlines the characteristics of slot-die coating, along with its advantages and disadvantages in commercial applications, suggests corresponding optimization strategies, and discusses future development directions to enhance the scalability and efficiency of PSCs, paving the way for broader commercial deployment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.