Cesium lead halide (CsPbX 3 , X = Cl, Br, and I) perovskite nanocrystals (NCs) possess great potential in light-emitting diode applications because of their high brightness, low cost, tunable luminescence, and facile synthesis nature. However, these NCs are often disadvantaged by their instability in nonsolvent environment that hinders the practical applications of the material. In order to solve these issues, cesium lead halide NCs prepared using a solvent environment can be placed on substrates to retain the high stability and expand the applicability of the material. This Review focuses on the transfer of the allinorganic cesium lead halide NCs (synthesized in solutions) onto matrix materials and their direct synthesis on these bases, including the inert shell growth (inorganic and organic shell), embedment in matrixes (e.g., metal organic frameworks, porous SiO 2 , glass, ZrO 2 , Al 2 O 3 , and AlOOH), and direct synthesis in substrates. In particular, the strategies for stability and PL property improvement of the materials are also summarized. The purpose of this Review is to provide inspiration for the encapsulation of cesium lead halide NCs with high brightness and stability in matrixes to expand the applicability of these materials in wide color gamut backlighting (e.g., white-light-emitting devices).