2022
DOI: 10.3390/app122413001
|View full text |Cite
|
Sign up to set email alerts
|

CSRLoan: Cold Start Loan Recommendation with Semantic-Enhanced Neural Matrix Factorization

Abstract: Recommending loan products to applicants would benefit many financial businesses and individuals. Nevertheless, many loan products suffer from the cold start problem; i.e., there are no available historical data for training the recommendation model. Considering the delayed feedback and the complex semantic properties of loans, methods for general cold start recommendation cannot be directly used. Moreover, existing loan recommendation methods ignore the default risk, which should be evaluated along with the a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 34 publications
0
0
0
Order By: Relevance