Wireless sensor networks are featured by restricted network resources, which is quite possible to result in low positioning precision and serious time delay in positioning, accordingly, the overall network positioning quality may be reduced; to improve the positioning precision of WSN, based on the DV-HOP positioning algorithm, two aspects of the node positioning were improved from the error precision and least square estimation; thus, a WSN positioning algorithm based on 3D discrete chaotic mapping was proposed: first, a 3D discrete chaotic mapping was constructed, the Chaos Optimization Algorithm was introduced into the positioning error precision calculation, and the unknown nodes were positioned by introducing the least square estimation; second, a simulation experiment of new algorithm was performed from the aspects of communication radius and topological structure. The experimental results showed that the algorithm proposed in this paper can effectively reduce the positioning error caused by calculation and improved the positioning precision. Further, based on the algorithm of this paper, the moving mechanism could be introduced to make dynamic planning for overall network resources, so that the energy cost of the algorithm of this paper in the confirmation process of WSN network terminal could be further reduced to make the algorithm more valuable in engineering field.